Students Final Academic Score Prediction Using Boosting Regression Algorithms

Dignifo Nauval Muhammady, Haidar Aldy Eka Nugraha, Vinna Rahmayanti Setyaning Nastiti, Christian Sri Kusuma Aditya

Abstract

Academic grades are crucial in education because they assist students in acquiring the knowledge and skills necessary to succeed in school and their future. Accurately predicting students’ final academic performance grade score is important for educational decision-makers. However, creating precise prediction models based on students’ historical data can be challenging due to the complex nature of academic data. This research analyzes student academic data totaling 649 Portuguese language course student data that has been processed according to data requirements which are then predicted using XGBoost Regressor, Light Gradient Boosting Machine (LGBM), and CatBoost. This research aims to develop a robust prediction model that can effectively predict students’ final academic performance. This research offers valuable insights into the factors that influence academic success and provides practical implications for educational institutions looking to improve their decision-making processes. The prediction requires identifying key predictors of academic performance, such as previous grades, attendance records, and socio-economic background. The research makes a contribution by improving the matrix MAE in this research is less than the previous research from 2.2 average each algorithm to 0.22 average, this less MAE means the better model. The research achieved MAE score of 0.22 average. In conclusion, this research is expected to address the challenge of predicting student academic performance through the application of advanced machine learning techniques. The results provide valuable insights for decision-makers in education and highlight the importance of a data-driven approach to improving academic performance. By utilizing machine learning algorithms, educational institutions can effectively support student learning and success.

Keywords

Academic; CatBoost; Data Mining; Light Gradient Boosting Machine; Machine Learning; XGBoost Regressor

Full Text:

PDF

DOI: http://dx.doi.org/10.26555/jiteki.v10i1.28352