Performance of an AIOT-Particle Device for Air Quality and Environmental Data Prediction in Salatiga Area Using ARIMA Model

Johanes Dian Kurniawan, Suryasatriya Trihandaru, Hanna Arini Parhusip

Abstract

This study introduces the AIOT-Particle, a compact device designed for comprehensive air quality and environmental monitoring in Tegalrejo, Salatiga, Indonesia. Addressing the need for real-time, multi-parameter environmental data, the device simultaneously tracks PM1.0, PM2.5, temperature, humidity, pressure, and altitude, utilizing a built-in data fusion algorithm to ensure accurate and coherent data collection. Air pollution standards classify air quality as “good” (0–50), “moderate” (51–100), “unhealthy” (101-200), “very unhealthy” (201-300), and “hazardous” (>300). The research contribution is the development and validation of the AIOT-Particle using the ARIMA model for precise environmental monitoring. The methods involved deploying the device in Salatiga and applying the ARIMA model to analyze the collected data for accuracy. The results demonstrated promising accuracy: for PM1.0, the RMSE was 8.13 with an MAE of 6.04; for PM2.5, the RMSE was 6.60 with an MAE of 4.49. Environmental data analysis showed an RMSE of 0.74 for temperature (MAE 0.43), 2.11 for humidity (MAE 1.36), 0.25 for pressure (MAE 0.19), and 2.18 for altitude (MAE 1.70). These findings highlight the device’s potential to enhance environmental surveillance and public health assessments, advance the understanding of air quality dynamics, and support targeted interventions to mitigate environmental risks. The novelty of this study lies in the integration of multiple environmental parameters into a single monitoring device, validated for accuracy using the ARIMA model.

Keywords

ARIMA; Air Quality; IoT; Prediction; Forecasting

Full Text:

PDF

DOI: http://dx.doi.org/10.26555/jiteki.v10i2.28490